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Thermolysis of 1,3,8-Nonatriyne: Evidence for Scheme 1
Intramolecular [2 + 4] Cycloaromatization to a
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Cycloaromatizations have been of intense recent interestScheme 2
because of their potential involvement in the chemistry of A

. L . . Z _ & 2H
antitumor agents. In principle, aromatic rings might also be /\/\D —_— /©:> . Q:>
prepared directly by diyne- alkyne cycloaddition reactions, b { D D
as exemplified by eq 1, which yieldsbenzyne. This concep- 5d, :A D D
tually simple process is a logical extension of known enyne Y 9 10
alkene, enyne- alkyne, and diynet- alkene cycloadditions (eqs R _ .
2—4) which have been previously demonstrated in substances /= _»DD _»D:©:> 2" Dm
where the reacting components are held together by a three- B T ~— N D
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carbon tethef:? In flash vacuum thermolysis experiments, the

A
=== — @ 1,2-shifts are well-known for alkynes; one alternative mecha-
1 2 3 nism (Scheme 2) would pass through vinyliddde C—H bond
_ A insertion and Bergman cyclizatibhmight give p-benzynel3
J M —— @) and, hence, indah. Enediynel2 is unknown, although larger

ring homologues have been investigateédlo distinguish these
two paths, we prepared and pyrolyzéet,. The *H NMR

i
B>

/ v = © spectrum of the isolated indan cleanly showed an AB spin
system for the aromatic hydrogens; these results are consistent
== .= -2 5 4 with structure10 and a [2+ 4] cycloaddition mechanism.

Similar deuterium labeling was observed in the indene isolated
) ) ) ) from these reactions.
intermediacy of strained cyclic cumulefiesas supported by Ap initio calculations were carried out to estimate the
the observa_tlon of preohctable secondary processes. We deSC”bEeometric and energetic feasibility of a diyne plus alkyne
here experimental evidence for 1,3-diyrealkyne [2 + 4] cycloaddition. Stationary points were located at the MP2(FC)/
cycloaromatization (eq 1) as a new mode of DieMdder type  g-31G* |evel, followed by analytic Hessian calculation and
cycloaddition. Although this process might seem geometrically single-point MP4SDTQ/6-31G* energy evaluatii2 This
!mprobable, ab |n|t]o computational stud@s_ support the feasibil- |aye| of theory correctly describes energetics of the parent
ity of the parent diynet alkyne cycloaddition step. Diels—Alder reaction to within a few kcal/mdf The transition
~1,3,8-Nonatriyne§) was prepared in several steps as shown giate s predicted to havg,, symmetry, with a nascent-€C
in Scheme 1. Alkylation of1,4-b.|s(tr|methylsnyl)b_utadlyne and  pond distance of 2.196 A: this is in good agreement with
subsequent TMS removal gaten 50% overall yield. Flash  geometries of other pericyclic transition statésThe predicted
vacuum thermolysis of purgat 102 Torr in a quartz apparatus
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confirmed by pyr.OIySIS of indan under the same conditions. _ to cyclononen-3,5-diyne, which might further rearrange to indan. However,
The most straightforward route to the observed product is models show the divalent center in this intermediate to-deA distant

through intramolecular [2- 4] cycloaddition to give benzyne ggﬂrégf iﬁ"é%?gen}&r?ﬁg‘ai;?:ﬁcgﬁg“é:“2”7 seems highly unlikely. By
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Figure 1. Free energy diagram (kcal/mol, 2&) and MP2/6-31G*
transition state structure for the cycloaddition of acetylene with
butadiyne.

free energy changes are summarized in Figure 1. Intramolecula

reaction should decreageG* by ca. 5 kcal/mol because of the

smaller TASF component. The large predicted reaction exo-
thermicity is consistent with the formation of a new aromatic
ring, while the high activation energy must derive from the

dramatic molecular distortion necessary to reach the transition
state geometry. Most notably, the predicted activation free

energy is only 9.0 kcal/mol higher than that calculated for the
cycloaddition of ethyne with butadied&.he electronic features

of this cycloaromatization transition state are unusual because

two orthogonal orbital arrays must come together simulta-
neously. In this process, the out-of-planeorbitals simply
merge to form the aromatic ring system, while the in-plane

ot bonds transform inte bond orbitals and the in-plane benzyne

r

Communications to the Editor

reported the thermal trimerization of acetylene to benZéne.
Concerted cyclotrimerization (eq 5) is very unlikely because
this will have large enthalpic and entropic barritfsAmong
many possible stepwise mechanisms, Fields and Meyerson
proposed dimerization of acetylene to butadiyne followed by
[2 + 4] cycloaddition (eq 6) to give benzyr@. In support of
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this mechanism, they observed that co-pyrolysis of acetylene
and phthalic anhydride yielded naphthalene and other aromatics.
Both the thermal dimerization of acetyléfand the reduction
of benzyne to benzeheare precedented, but experimental
evidence for the key cycloaddition step has been scant. The
present data are consistent with the mechanism depicted in eq
6. Beyond this, one of the enduring questions in combustion
chemistry is the mechanism for formation of aromatic ritigs.
Some types of flames are rich in alkynes, and we speculate that
cycloadditions such as those shown in egsA1lmay play an
important role in six-membered ring formation in combustion.
Our results thus support the existence of a sixth mode of
Diels—Alder cycloaddition, thus completing this series of
pericyclic reactions. This new mode of cycloaromatization
complements the many electrocyclizations that have been
reported.22
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explosion during reduced pressure distillation, with instantaneous jag72141F

formation of heavy soot. Similarly, purification by preparative

gas chromatography at 13C resulted in an injector port filled

with fine black powder; this material is currently being analyzed.
Both our experiments and model ab initio calculations are

thus consistent with intramolecular {2 4] cycloaromatization

of triyne 5 to benzyne6. Further reaction gives indan and

indene. This cycloaddition has little precedent, but might

potentially be involved in diverse high-temperature processes
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